A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type.

نویسندگان

  • E R Chin
  • E N Olson
  • J A Richardson
  • Q Yang
  • C Humphries
  • J M Shelton
  • H Wu
  • W Zhu
  • R Bassel-Duby
  • R S Williams
چکیده

Slow- and fast-twitch myofibers of adult skeletal muscles express unique sets of muscle-specific genes, and these distinctive programs of gene expression are controlled by variations in motor neuron activity. It is well established that, as a consequence of more frequent neural stimulation, slow fibers maintain higher levels of intracellular free calcium than fast fibers, but the mechanisms by which calcium may function as a messenger linking nerve activity to changes in gene expression in skeletal muscle have been unknown. Here, fiber-type-specific gene expression in skeletal muscles is shown to be controlled by a signaling pathway that involves calcineurin, a cyclosporin-sensitive, calcium-regulated serine/threonine phosphatase. Activation of calcineurin in skeletal myocytes selectively up-regulates slow-fiber-specific gene promoters. Conversely, inhibition of calcineurin activity by administration of cyclosporin A to intact animals promotes slow-to-fast fiber transformation. Transcriptional activation of slow-fiber-specific transcription appears to be mediated by a combinatorial mechanism involving proteins of the NFAT and MEF2 families. These results identify a molecular mechanism by which different patterns of motor nerve activity promote selective changes in gene expression to establish the specialized characteristics of slow and fast myofibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth.

Nerve activity can induce long-lasting, transcription-dependent changes in skeletal muscle fibers and thus affect muscle growth and fiber-type specificity. Calcineurin signaling has been implicated in the transcriptional regulation of slow muscle fiber genes in culture, but the functional role of calcineurin in vivo has not been unambiguously demonstrated. Here, we report that the up-regulation...

متن کامل

Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition.

Skeletal muscle is highly adaptable, being capable of undergoing changes in its structural and functional properties in response to physiological stimuli. The fast-to-slow muscle fiber-type transition is evoked by increased motor nerve activity. Recently, the calcineurin (CaN) signaling pathway has been implicated in the transcriptional regulation of slow muscle fiber genes. Here we investigate...

متن کامل

Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers.

Two Ca2+-dependent signaling pathways, mediated by the Ca2+-activated phosphatase calcineurin and by the Ca2+-activated kinase Ca2+/calmodulin-dependent kinase (CaMK), are both believed to function in fast-to-slow skeletal muscle fiber type transformation, but questions about the relative importance of the two pathways still remain. Here, the differential gene expression during fast-to-slow fib...

متن کامل

Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle.

Skeletal muscle fibers differ considerably in their metabolic and physiological properties. Skeletal muscle displays a high degree of metabolic flexibility, which allows the myofibers to adapt to various physiological demands by shifting energy substrate utilization. Transcriptional events play a pivotal role in the metabolic adaptations of skeletal muscle. The expression of genes essential for...

متن کامل

تاثیر یک دوره تمرین مقاومتی بر بیان اینترلوکین-6 و RCAN-1 در عضله اسکلتی موشهای صحرایی دیابتی شده با استروپتوزوسین

Background: Myokines released from skeletal muscle have multiple metabolic and hypertrophic effects. On the other hand, one of proposed pathways for effects of exercise training on metabolic diseases is calcineurin signaling pathway. With considering to relation between interleukin-6 (IL-6) and calcineurin, the purpose of this study was to investigate whether the resistance training has an effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 12 16  شماره 

صفحات  -

تاریخ انتشار 1998